DUALITIES IN TRIANGULATED CATEGORIES ASSIGNMENT 1. DUE: 27TH MARCH 2024

(1) Let T be a pretriangulated category. Suppose that $T=(X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X)$ and $T^{\prime}=\left(X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime} \xrightarrow{g^{\prime}} Z^{\prime} \xrightarrow{h^{\prime}} \Sigma X^{\prime}\right)$ are candidate triangles. Show that if their sum

$$
X \oplus X^{\prime} \xrightarrow{f \oplus f^{\prime}} Y \oplus Y^{\prime} \xrightarrow{g \oplus g^{\prime}} Z \oplus Z^{\prime} \xrightarrow{h \oplus h^{\prime}} \Sigma X \oplus \Sigma X^{\prime}
$$

is a triangle, then T and T^{\prime} are triangles.
(2) (i) Show that the short exact sequence $0 \rightarrow \mathbb{Z} / 2 \xrightarrow{{ }^{2}} \mathbb{Z} / 4 \xrightarrow{\bmod 2} \mathbb{Z} / 2 \rightarrow 0$ of \mathbb{Z}-modules does not give rise to a triangle in $\mathrm{K}(\mathbb{Z})$.
(ii) Let R be a ring. Prove that if $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is a split exact sequence of R-modules, then there is a map $h: N \rightarrow \Sigma L$ such that $L \xrightarrow{f} M \xrightarrow{g} N \xrightarrow{h} \Sigma L$ is a triangle in $\mathrm{K}(R)$.

