DUALITIES IN TRIANGULATED CATEGORIES ASSIGNMENT 3. DUE: 22ND MAY 2024

- (1) Let R be a commutative ring and $I = (x_1, \dots, x_n)$ be a finitely generated ideal of R. Prove that if (x_1, \dots, x_n) is a regular sequence, then R/I is a compact object of $\mathsf{D}(R)$. (Recall that a sequence (x_1, \dots, x_n) is regular if x_1 is not a zero-divisor of R, and x_i is not a zero-divisor of $R/(x_1, \dots, x_{i-1})$ for all $i \ge 2$.)
- (2) Let T be a tensor-triangulated category which is compactly generated by rigid objects. Suppose that L is a monoidal localization of T, and write S for the full subcategory of L-local objects.
 - (a) Prove that the natural map $\alpha_X \colon L1 \otimes X \to LX$ is an equivalence for all rigid X.
 - (b) Prove that the following conditions are equivalent:
 - (i) The natural map $\alpha_X \colon L\mathbb{1} \otimes X \to LX$ is an equivalence for all $X \in \mathsf{T}$.
 - (ii) $i: S \to T$ preserves coproducts.
 - (iii) $L: \mathsf{T} \to \mathsf{T}$ preserves coproducts.
 - (iv) S is a localizing subcategory of T.
 - (c) Give an example of a smashing localization.
 - (d) Prove that $L: \mathsf{T} \to \mathcal{S}$ preserve compacts if L is smashing. Does this still hold if L is not smashing?